Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes Electrical and Computer Engineering

< A

< ∃ >

Contents

3 Linear independence and basis

3

Well known vector spaces

You are familar with the 2D vector space:

$$\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$$

イロト イポト イヨト イヨト

In \mathbb{R}^2 vectors can be added and multiplied by a number called a scalar.

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$\lambda \odot (x,y) = (\lambda \cdot x, \lambda \cdot y)$$
 for $\lambda \in \mathbb{R}$

< A >

Definition

Definition

Let $\mathbb K$ be a field. A set ${\boldsymbol V}$ together with two operations:

 $\bullet~$ vector addition $+: \textbf{V} \times \textbf{V} \rightarrow \textbf{V}$ and

• scalar multiplication $\cdot:\mathbb{K}\times \mathbf{V}\rightarrow \mathbf{V}$

is called a vector space over the field ${\mathbb K}$ if it satisfies the following conditions.

- for any $u, v, w \in V$ we have u + v = v + u and u + (v + w) = (u + v) + w,
- there is $0\in V$ called the zero vector such that for any $v\in V$ we have v+0=0+v=v,
- for any $\mathbf{v} \in \mathbf{V}$ there is $-\mathbf{v} \in \mathbf{V}$ such that $\mathbf{v} + -\mathbf{v} = -\mathbf{v} + \mathbf{v} = \mathbf{0}$,

- 4 同 1 - 4 回 1 - 4 回 1

Definition

- for any $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ and any scalar $\lambda \in \mathbb{K}$ we have $\lambda \cdot (\mathbf{u} + \mathbf{v}) = \lambda \cdot \mathbf{u} + \lambda \cdot \mathbf{v}$
- for any $\mathbf{u} \in \mathbf{V}$ and any scalar $\lambda_1, \lambda_2 \in \mathbb{K}$ we have $(\lambda_1 + \lambda_2) \cdot \mathbf{u} = \lambda_1 \cdot \mathbf{u} + \lambda_2 \cdot \mathbf{u}$
- for any $\mathbf{u} \in \mathbf{V}$ and any scalars $\lambda_1, \lambda_2 \in \mathbb{K}$ we have $(\lambda_1 \cdot \lambda_2) \cdot \mathbf{u} = \lambda_1 \cdot (\lambda_2 \cdot \mathbf{u})$
- for any $\mathbf{u} \in \mathbf{V}$ we have $1 \cdot \mathbf{u} = \mathbf{u}$.

The elements of **V** are called *vectors* and the elements of \mathbb{K} are *scalars*.

Examples

Let $\mathbb K$ be any field and let $n\in\mathbb N$ be a natural number. Then

$$\mathbb{K}^n = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{K}\}$$

together with vector addition

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and scalar multiplication

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$$
 for any $\lambda \in \mathbb{K}$

forms a vector space over $\mathbb K.$ The zero vector $\boldsymbol{0}$ is in this case given by

$$\mathbf{0} = (0, \ldots, 0)$$

7/32

Examples

In the case when $\mathbb{K} = \mathbb{R}$ and n = 2 we get the well known space \mathbb{R}^2 .

If $\mathbb{K}=\mathbb{C}$ we obtain new space

$$\mathbb{C}^n = \{(z_1,\ldots,z_n) \mid z_i \in \mathbb{C}\}.$$

< ∃ >

Complex numbers as a vector space

Recall that the set of complex numbers ${\mathbb C}$ has been defined as

$$\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a, b) \mid a, b \in \mathbb{R}\}.$$

The set \mathbb{C} together with the standard complex numbers addition can be view as a vector space over the field \mathbb{R} .

Non-standard examples

Let \mathbb{K} be a field. The set $\mathbb{K}[x]$ of all polynomials over \mathbb{K} with the standard polynomial addition and multiplication by a constant from \mathbb{K} forms a vector space over \mathbb{K} . The zero vector $\mathbf{0}$ is the zero polynomial 0. Similarly, the set $\mathbb{K}_n[x]$ of polynomials of degree less than or equal to n over the field \mathbb{K} is a vector space.

Contents

3 Linear independence and basis

3

11/32

Definition

Definition

Let **V** be a vector space over \mathbb{K} . A subset $\mathbf{W} \subset \mathbf{V}$ is called a *subspace* of **V** if **W** is a vector space over \mathbb{K} under the same operations of vector addition and scalar multiplication. To put it differently, a subset $\mathbf{W} \subseteq \mathbf{V}$ is a subspace of \mathbf{V} if

- for any $w_1, w_2 \in W$ we have $w_1 + w_2 \in W$
- $0 \in W$
- for any $\mathbf{w} \in \mathbf{W}$ we have $-\mathbf{w} \in \mathbf{W}$
- for any scalar $\lambda \in \mathbb{K}$ and any $\mathbf{w} \in \mathbf{W}$ we have $\lambda \cdot \mathbf{w} \in \mathbf{W}$

Examples

Consider the vector space $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ with the standard vector addition and scalar multiplication. Define the set W by

$$W = \{(x, y, z) \mid 2x + y + 3z = 0\}$$

W is a subspace of \mathbb{R}^3 . On the other hand the set W'

$$W' = \{(x, y, z) \mid x^2 = 1\}$$

is *not* a subspace of \mathbb{R}^3 .

Examples

Consider the vector space $\mathbb C$ over $\mathbb R.$ The set

$$\{z \in \mathbb{C} \mid \mathfrak{Re}(z) = 0\}$$

is a subspace of \mathbb{C} .

< A

< ∃ >

- A - E - N

Linear combination

Definition

Let V be a vector space over a field \mathbb{K} and let $a_1, \ldots, a_n \in \mathbb{K}$ and $v_1, \ldots, v_n \in V$. The vector

```
a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n \in \mathbf{V}
```

is called the *linear combination* of the vectors v_1, \ldots, v_n with coefficients a_1, \ldots, a_n .

Example: In \mathbb{R}^2 the vector (2,3) is a linear combination of (1,1) and (0,1) with coefficients 2 and 1:

$$(2,3) = 2 \cdot (1,1) + 1 \cdot (0,1)$$

- 4 同 1 - 4 回 1 - 4 回 1

Span

Definition

Let **V** be a vector space over a field \mathbb{K} and let $S \subseteq \mathbf{V}$ be a set of vectors. By the *span* of the set *S* of vectors we mean the set *span*(*S*) \subseteq **V** defined by

$$span(S) = \{a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n \mid a_i \in \mathbb{K} \text{ and } \mathbf{v}_i \in \mathbf{S}\}.$$

In other words, span(S) is the set of all possible linear combinations of vectors from S.

Example: Consider \mathbb{R}^3 and two vectors $(1, 2, 0), (0, 0, 3) \in \mathbb{R}^3$.

 $span(\{(1,2,0),(0,0,3)\}) = \{a(1,2,0) + b(0,0,3) \mid a, b \in \mathbb{R}\} = \{(a,2a,3b) \mid a, b \in \mathbb{R}\}$

- 4 同 1 - 4 回 1 - 4 回 1

Span

Theorem

Let V be a vector space over a field $\mathbb K$ and let $v_1,\ldots,v_n\in V.$ Then the set

$$\mathsf{span}(\{\mathsf{v}_1,\ldots,\mathsf{v}_\mathsf{n}\})=\{a_1\mathsf{v}_1+\ldots+a_n\mathsf{v}_\mathsf{n}\mid a_i\in\mathbb{K}\}.$$

is a subspace of V containing the vectors v_1, \ldots, v_n .

Proof: Take $u,w \in \textit{span}(\{v_1,\ldots,v_n\}).$ This means that

$$\mathbf{u} = a_1 \mathbf{v}_1 + \ldots + a_n \mathbf{v}_n,$$
$$\mathbf{w} = b_1 \mathbf{v}_1 + \ldots + b_n \mathbf{v}_n,$$

for $a_i, b_i \in \mathbf{K}$.

(4 同) (ヨ) (ヨ)

Span

• is
$$\mathbf{u} + \mathbf{w} \in span(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$$
? Yes, because
 $\mathbf{u} + \mathbf{w} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n + b_1\mathbf{v}_1 + \dots + b_n\mathbf{v}_n = (a_1 + b_1)\mathbf{v}_1 + \dots + (a_n + b_n)\mathbf{v}_n$
• is $-\mathbf{u} \in span(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$? Yes, because
 $-\mathbf{u} = -(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n) = (-a_1)\mathbf{v}_1 + \dots + (-a_n)\mathbf{v}_n$
• is $\mathbf{0} \in span(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$? Yes, because
 $\mathbf{0} = 0\mathbf{v}_1 + \dots + 0\mathbf{v}_n$,
• is $\lambda \cdot \mathbf{u} \in span(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$ for any $\lambda \in \mathbb{K}$? Yes, because
 $\lambda \cdot \mathbf{u} = \lambda(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n) = (\lambda a_1)\mathbf{v}_1 + \dots + (\lambda a_n)\mathbf{v}_n$.
FROGRAM ROZWOJOWY
POLITECHNIKI WARSZAWSKIEJ

<ロ> <同> <同> < 同> < 同>

3

Span: Examples

• \mathbb{C} over \mathbb{R} .

$$span(\{1,i\}) = \{a + bi \mid a, b \in \mathbb{R}\} = \mathbb{C},$$

$$span(\{i, 2 + i\}) = \mathbb{C},$$

$$span(\{i + 3\}) = \{3a + ai \mid a \in \mathbb{R}\} \neq \mathbb{C}.$$

• $\mathbb{R}[x]$ over \mathbb{R}

$$span(\{x^2, x, 1\}) = span(\{x^2, x, 1, x^2 + 5\}) =$$
$$\{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\} \text{ -quadratic functions.}$$

3

Contents

(4 同 ト 4 ヨ ト 4 ヨ ト

Linear independence

Definition

Let **V** be a vector space over a field \mathbb{K} . We say that a set $S \subseteq \mathbf{V}$ of vectors from **V** is *linearly independent* if for any $\mathbf{v}_1, \ldots, \mathbf{v}_n \in S$ and any $a_1, \ldots, a_n \in \mathbb{K}$

$$a_1\mathbf{v}_1+\ldots+a_n\mathbf{v}_n=\mathbf{0}\implies a_1=\ldots=a_n=\mathbf{0}.$$

Otherwise, the set S is *linearly dependent*.

Example: \mathbb{R}^2 over $\mathbb{R} {:} \{(0,1),(1,1)\}$ is linearly independent because the linear combination

$$a(0,1) + b(1,1) = (a, a + b)$$

is equal the zero vector (0,0) if a = 0 and a + b = 0. This implies that a = b = 0.

21/32

Linear Independence: Examples

• \mathbb{C} over \mathbb{R} : $\{1, i\}$ is linearly independent because

$$a \cdot 1 + b \cdot i = 0 \implies a = b = 0.$$

• $\mathbb{R}[x]$ over \mathbb{R} : $\{x+1, x-1, 2\}$ is linearly dependent because

$$(x + 1) + (-1)(x - 1) + (-1)2 = 0.$$

• $\mathbb{R}[x]$ over \mathbb{R} : Is $\{1, x, x^2, x^3, \ldots\}$ a linearly independent set?

Linear independence: properties

Fact

Let V be a vector space over \mathbb{K} . The set $\{v_1,\ldots,v_n\}\subseteq V$ is linearly dependent if and only if at least one v_i of the vectors from $\{v_1,\ldots,v_n\}$ can be expressed as the linear combination of others.

Fact

Let **V** be a vector space over \mathbb{K} . If the set $S \subseteq \mathbf{V}$ is linearly independent then any subset $S' \subseteq S$ of the set S is also linearly independent.

Definition

Let **V** be a vector space over a field \mathbb{K} . A set $B \subseteq \mathbf{V}$ of vectors is called *a basis of* **V** if

• B is linearly independent,

•
$$span(B) = \mathbf{V}$$
.

For the vector space \mathbb{R}^2 over \mathbb{R} : $\{(1,0),(1,1)\}$ is a basis of \mathbb{R}^2 .

4 3 b

Basis: Examples

- \mathbb{C} over \mathbb{R} : The set $\{1, i\}$ is a basis of \mathbb{C} . So is e.g. $\{1, i+2\}$.
- Let ${\mathbb K}$ be a field. For the vector space ${\mathbb K}^n$ over ${\mathbb K}$ the set

 $\{(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)\}$

forms a basis of \mathbb{K}^n .

• $\mathbb{K}_n[x]$ over \mathbb{K} : The set

$$\{1, x, x^2, x^3, \ldots, x^n\}$$

Basis: Properties

Theorem

Let V be a vector space over \mathbb{K} . A set $\{v_1, \ldots, v_n\} \subseteq V$ is a basis of V if and only if any vector $\mathbf{w} \in \mathbf{V}$ can be uniquely expressed as a linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Proof: (\Rightarrow) Let $\mathbf{w} = a_1\mathbf{v}_1 + \ldots + a_n\mathbf{v}_n$ and $\mathbf{w} = b_1\mathbf{v}_1 + \ldots + b_n\mathbf{v}_n$. This means that

$$a_1\mathbf{v}_1+\ldots+a_n\mathbf{v}_n=b_1\mathbf{v}_1+\ldots+b_n\mathbf{v}_n$$

Hence.

$$(a_1-b_1)\mathbf{v_1}+\ldots+(a_n-b_n)\mathbf{v_n}=\mathbf{0}$$

Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly independent we have $a_1 - b_1 = 0, \ldots, a_n - b_n = 0$. Thus $a_1 = b_1, \ldots, a_n = b_n$.

Basis: Properties

Proof: (\Leftarrow) Since any vector $\mathbf{w} \in \mathbf{V}$ may be expressed as the linear combination of $\{v_1, \ldots, v_n\}$ this means that $span({v_1, \ldots, v_n}) = V$. Was is left to be shown is linear independence of $\{v_1, \ldots, v_n\}$. Consider the zero vector **0**. It can be expressed as the linear combination

$$\mathbf{0} = 0\mathbf{v_1} + \ldots + 0\mathbf{v_n}.$$

Since the above representation is unique for any $a_1, \ldots, a_n \in \mathbb{K}$

$$a_1\mathbf{v}_1+\ldots+a_n\mathbf{v}_n=\mathbf{0}\implies a_1=a_2=\ldots=a_n=\mathbf{0}.$$

UNIA EUROPEJSK/

Dimension

Theorem

Let a vector space ${\bf V}$ have a finite basis. Then any two bases of ${\bf V}$ are of the same size.

Definition

If a vector space \mathbf{V} has a finite basis then the *dimension* of \mathbf{V} is the size of any basis of \mathbf{V} . Otherwise, the *dimension* is defined to be ∞ . We denote this number by dim(\mathbf{V}).

Example: dim(\mathbb{R}^3) = 3.

< ∃ > < ∃ >

Dimension: Examples

- $\dim(\{0\}) = 0$,
- dim $(\mathbb{K}^n) = n$,
- $\dim(\mathbb{K}[x]) = \infty$,
- dim $(\mathbb{K}_n[x]) = n + 1$,
- dim(\mathbb{C} over \mathbb{R}) = 2,
- dim(\mathbb{C} over \mathbb{C}) = 1.

3.5

-

29/32

Dimension: Properties

Theorem

If ${\bf W}$ is a subspace of a vector space ${\bf V}$ then

- $\dim(\mathbf{W}) \leq \dim(\mathbf{V})$,
- $\dim(W) = \dim(V) \implies W = V$ for a space V with a finite dimension.

- 4 同 1 - 4 回 1 - 4 回 1

Dimension: Properties

Theorem

If ${\bf W}$ is a subspace of a vector space ${\bf V}$ then

- $\dim(\mathbf{W}) \leq \dim(\mathbf{V})$,
- $\dim(W) = \dim(V) \implies W = V$ for a space V with a finite dimension.

- 4 同 1 - 4 回 1 - 4 回 1

Dimension: Properties

Theorem

Let **V** be a vector space and dim $(\mathbf{V}) = n$. Finally, let $S \subseteq \mathbf{V}$. Then:

- if $span(S) = \mathbf{V}$ then $|S| \ge n$,
- if S is linearly independent and |S| = n then S is a basis,
- if $span(S) = \mathbf{V}$ and |S| = n then S is a basis,
- if |S| > n then S is linearly dependent.

32/32