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Well known vector spaces

You are familar with the 2D vector space:

R2 = {(x , y) | x , y ∈ R}

Image source: wikipedia.org
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R2 vector space

In R2 vectors can be added and multiplied by a number called a
scalar:

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2),

λ� (x , y) = (λ · x , λ · y) for λ ∈ R
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Definition

Definition

Let K be a field. A set V together with two operations:

vector addition + : V × V→ V and

scalar multiplication · : K× V→ V

is called a vector space over the field K if it satisfies the following conditions.

for any u, v,w ∈ V we have u+ v = v + u and u+ (v +w) = (u+ v) +w,

there is 0 ∈ V called the zero vector such that for any v ∈ V we have
v + 0 = 0 + v = v,

for any v ∈ V there is −v ∈ V such that v +−v = −v + v = 0,
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Definition

for any u, v ∈ V and any scalar λ ∈ K we have
λ · (u + v) = λ · u + λ · v
for any u ∈ V and any scalar λ1, λ2 ∈ K we have
(λ1 + λ2) · u = λ1 · u + λ2 · u
for any u ∈ V and any scalars λ1, λ2 ∈ K we have
(λ1 · λ2) · u = λ1 · (λ2 · u)

for any u ∈ V we have 1 · u = u.

The elements of V are called vectors and the elements of K are
scalars.
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Examples

Let K be any field and let n ∈ N be a natural number. Then

Kn = {(x1, . . . , xn) | xi ∈ K}

together with vector addition

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and scalar multiplication

λ · (x1, . . . , xn) = (λ · x1, . . . , λ · xn) for any λ ∈ K

forms a vector space over K. The zero vector 0 is in this case given by

0 = (0, . . . , 0)
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Examples

In the case when K = R and n = 2 we get the well known space
R2.
If K = C we obtain new space

Cn = {(z1, . . . , zn) | zi ∈ C}.
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Complex numbers as a vector space

Recall that the set of complex numbers C has been defined as

C = R× R = {(a, b) | a, b ∈ R}.

The set C together with the standard complex numbers addition
can be view as a vector space over the field R.
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Non-standard examples

Let K be a field. The set K[x ] of all polynomials over K with the
standard polynomial addition and multiplication by a constant
from K forms a vector space over K. The zero vector 0 is the zero
polynomial 0. Similarly, the set Kn[x ] of polynomials of degree less
than or equal to n over the field K is a vector space.
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Definition

Let V be a vector space over K. A subset W ⊆ V is called a
subspace of V if W is a vector space over K under the same
operations of vector addition and scalar multiplication.
To put it differently, a subset W ⊆ V is a subspace of V if

for any w1,w2 ∈W we have w1 + w2 ∈W

0 ∈W

for any w ∈W we have −w ∈W

for any scalar λ ∈ K and any w ∈W we have λ ·w ∈W
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Examples

Consider the vector space R3 = {(x , y , z) | x , y , z ∈ R} with the
standard vector addition and scalar multiplication. Define the set
W by

W = {(x , y , z) | 2x + y + 3z = 0}

W is a subspace of R3. On the other hand the set W ′

W ′ = {(x , y , z) | x2 = 1}

is not a subspace of R3.
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Examples

Consider the vector space C over R. The set

{z ∈ C | Re(z) = 0}

is a subspace of C.

Tomasz Brengos Transition Maths and Algebra with Geometry 14/32



Vector spaces
Subspaces

Linear independence and basis

Linear combination

Definition

Let V be a vector space over a field K and let a1, . . . , an ∈ K and
v1, . . . , vn ∈ V. The vector

a1v1 + . . .+ anvn ∈ V

is called the linear combination of the vectors v1, . . . , vn with coefficients

a1, . . . , an.

Example: In R2 the vector (2, 3) is a linear combination of (1, 1) and (0, 1)
with coefficients 2 and 1:

(2, 3) = 2 · (1, 1) + 1 · (0, 1)
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Span

Definition

Let V be a vector space over a field K and let S ⊆ V be a set of vectors. By
the span of the set S of vectors we mean the set span(S) ⊆ V defined by

span(S) = {a1v1 + . . .+ anvn | ai ∈ K and vi ∈ S}.

In other words, span(S) is the set of all possible linear combinations of vectors

from S .

Example: Consider R3 and two vectors (1, 2, 0), (0, 0, 3) ∈ R3.

span({(1, 2, 0), (0, 0, 3)}) = {a(1, 2, 0) + b(0, 0, 3) | a, b ∈ R} =

{(a, 2a, 3b) | a, b ∈ R}
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Span

Theorem

Let V be a vector space over a field K and let v1, . . . , vn ∈ V. Then the set

span({v1, . . . , vn}) = {a1v1 + . . .+ anvn | ai ∈ K}.

is a subspace of V containing the vectors v1, . . . , vn.

Proof: Take u,w ∈ span({v1, . . . , vn}). This means that

u = a1v1 + . . .+ anvn,

w = b1v1 + . . .+ bnvn,

for ai , bi ∈ K.

Tomasz Brengos Transition Maths and Algebra with Geometry 17/32



Vector spaces
Subspaces

Linear independence and basis

Span

is u + w ∈ span({v1, . . . , vn}) ? Yes, because

u + w = a1v1 + . . .+ anvn + b1v1 + . . .+ bnvn =

(a1 + b1)v1 + . . .+ (an + bn)vn

is −u ∈ span({v1, . . . , vn}) ? Yes, because

−u = −(a1v1 + . . .+ anvn) = (−a1)v1 + . . .+ (−an)vn

is 0 ∈ span({v1, . . . , vn})? Yes, because

0 = 0v1 + . . .+ 0vn,

is λ · u ∈ span({v1, . . . , vn}) for any λ ∈ K? Yes, because

λ · u = λ(a1v1 + . . .+ anvn) = (λa1)v1 + . . .+ (λan)vn.
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Span: Examples

C over R.

span({1, i}) = {a + bi | a, b ∈ R} = C,
span({i , 2 + i}) = C,
span({i + 3}) = {3a + ai | a ∈ R} 6= C.

R[x ] over R

span({x2, x , 1}) = span({x2, x , 1, x2 + 5}) =

{ax2 + bx + c | a, b, c ∈ R} -quadratic functions.
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Linear independence

Definition

Let V be a vector space over a field K. We say that a set S ⊆ V of vectors
from V is linearly independent if for any v1, . . . , vn ∈ S and any a1, . . . , an ∈ K

a1v1 + . . .+ anvn = 0 =⇒ a1 = . . . = an = 0.

Otherwise, the set S is linearly dependent.

Example: R2 over R: {(0, 1), (1, 1)} is linearly independent because the linear
combination

a(0, 1) + b(1, 1) = (a, a + b)

is equal the zero vector (0, 0) if a = 0 and a + b = 0. This implies that

a = b = 0.
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Linear Independence: Examples

C over R: {1, i} is linearly independent because

a · 1 + b · i = 0 =⇒ a = b = 0.

R[x ] over R: {x + 1, x − 1, 2} is linearly dependent because

(x + 1) + (−1)(x − 1) + (−1)2 = 0.

R[x ] over R: Is {1, x , x2, x3, . . .} a linearly independent set?
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Linear independence: properties

Fact

Let V be a vector space over K. The set {v1, . . . , vn} ⊆ V is
linearly dependent if and only if at least one vi of the vectors from
{v1, . . . , vn} can be expressed as the linear combination of others.

Fact

Let V be a vector space over K. If the set S ⊆ V is linearly
independent then any subset S ′ ⊆ S of the set S is also linearly
independent.
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Basis

Definition

Let V be a vector space over a field K. A set B ⊆ V of vectors is
called a basis of V if

B is linearly independent,

span(B) = V.

For the vector space R2 over R: {(1, 0), (1, 1)} is a basis of R2.
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Basis: Examples

C over R: The set {1, i} is a basis of C. So is e.g. {1, i + 2}.
Let K be a field. For the vector space Kn over K the set

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}

forms a basis of Kn.

Kn[x ] over K: The set

{1, x , x2, x3, . . . , xn}

is a basis of Kn[x ].
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Basis: Properties

Theorem

Let V be a vector space over K. A set {v1, . . . , vn} ⊆ V is a basis of V if and

only if any vector w ∈ V can be uniquely expressed as a linear combination of

vectors v1, . . . , vn.

Proof: (⇒) Let w = a1v1 + . . .+ anvn and w = b1v1 + . . .+ bnvn. This means
that

a1v1 + . . .+ anvn = b1v1 + . . .+ bnvn

Hence,
(a1 − b1)v1 + . . .+ (an − bn)vn = 0

Since {v1, . . . , vn} is linearly independent we have a1 − b1 = 0, . . . , an − bn = 0.

Thus a1 = b1, . . . , an = bn.
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Basis: Properties

Proof: (⇐) Since any vector w ∈ V may be expressed as the linear
combination of {v1, . . . , vn} this means that
span({v1, . . . , vn}) = V. Was is left to be shown is linear
independence of {v1, . . . , vn}. Consider the zero vector 0. It can
be expressed as the linear combination

0 = 0v1 + . . .+ 0vn.

Since the above representation is unique for any a1, . . . , an ∈ K

a1v1 + . . .+ anvn = 0 =⇒ a1 = a2 = . . . = an = 0.
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Dimension

Theorem

Let a vector space V have a finite basis. Then any two bases of V
are of the same size.

Definition

If a vector space V has a finite basis then the dimension of V is
the size of any basis of V. Otherwise, the dimension is defined to
be ∞. We denote this number by dim(V).

Example: dim(R3) = 3.
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Dimension: Examples

dim({0}) = 0,

dim(Kn) = n,

dim(K[x ]) =∞,

dim(Kn[x ]) = n + 1,

dim(C over R) = 2,

dim(C over C) = 1.
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Dimension: Properties

Theorem

If W is a subspace of a vector space V then

dim(W) ≤ dim(V),

dim(W) = dim(V) =⇒ W = V for a space V with a finite
dimension.

Tomasz Brengos Transition Maths and Algebra with Geometry 30/32



Vector spaces
Subspaces

Linear independence and basis

Dimension: Properties

Theorem

If W is a subspace of a vector space V then

dim(W) ≤ dim(V),

dim(W) = dim(V) =⇒ W = V for a space V with a finite
dimension.
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Dimension: Properties

Theorem

Let V be a vector space and dim(V) = n. Finally, let S ⊆ V.
Then:

if span(S) = V then |S | ≥ n,

if S is linearly independent and |S | = n then S is a basis,

if span(S) = V and |S | = n then S is a basis,

if |S | > n then S is linearly dependent.
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